TP-271 is a Novel Fluorocycline Active Against Susceptible and Multidrug-Resistant Neisseria gonorrhoeae

K. Kerstein, C. Fyfe, J. A. Sutcliffe, T. H. Grossman

Tetraphase Pharmaceuticals, Inc., Watertown, MA

Contact: Jennifer LaVin
Tetraphase Pharmaceuticals, Inc.

Poster
2445
114th ASM General Meeting
17-20 May 2014
Boston, MA

Abstract

Background: Gonococcal disease caused by Neisseria gonorrhoeae is a common cause of urethritis in men and endocervicitis in women. Drug resistance is a serious concern, with alarming resistance trends diminishing the effectiveness of all current standard-of-care antibiotics, including fluoroquinolones, current tetracyclines, oxacillin, erythromycin, and macrolides. TP-271, a novel and fully synthetic tetracycline analog, is a potent broad-spectrum antibiotic in preclinical development for the treatment of community-acquired respiratory infections and use against infections caused by bacterial pathogens [1]. In this study, TP-271 was tested in vitro against a panel of 20 N. gonorrhoeae isolates with various drug-resistance profiles. **Method:** Susceptibility testing was conducted by agar dilution according to CLSI guidelines. Results were interpreted using breakpoints for tetracycline, penicillin, ciprofloxacin and ceftriaxone. Strains were screened by PCR for tetracycline-resistance determinants commonly found in N. gonorrhoeae. **Results:** The minimal inhibitory concentration (MIC) range for TP-271 was 0.06 – 0.5 µg/mL, and MIC₉₀ was 0.125 µg/mL. The MIC₅₀ values for tetracycline, penicillin, ciprofloxacin and ceftriaxone were 1:8, 0.5, 0.008, and <0.008, respectively. **Conclusions:** If confirmed in vivo, these data support TP-271 as a promising new antibiotic for use against infections caused by multidrug-resistant N. gonorrhoeae.

References

5. CMI. 2006. CMI 14(9) 2008. Neisseria gonorrhoeae. Strains and Growth Conditions. Staphylococcus aureus was acquired from the laboratory of Dr. Ann Jerse (Uniformed Services University, Bethesda, MD) and from Eurofins-Medinet (Chantilly, VA).

Methods

TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Staphylococcus aureus infections from the 1970s, 1990s, and more recently 2005/2006. Strains were acquired from the laboratory of Dr. Ann Jerse (Uniformed Services University, Bethesda, MD) and from Eurofins-Medinet (Chantilly, VA). TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae. TP-271 is a novel broad-spectrum fluorocycline antibiotic with excellent potency against serious and multidrug-resistant Gram-β. Urethritis in men and endocervicitis in women are serious sexually transmitted diseases caused by Neisseria gonorrhoeae.

Results: The minimal inhibitory concentration (MIC) range for TP-271 was 0.06 – 0.5 µg/mL, and MIC₉₀ was 0.125 µg/mL. The MIC₅₀ values for tetracycline, penicillin, ciprofloxacin and ceftriaxone were 1:8, 0.5, 0.008, and <0.008, respectively. The activity of TP-271 was similar in strains displaying single or multiple resistance phenotypes. TP-271 showed potent activity against eight tetracycline-resistant isolates (MIC range: 0.06 – 0.5 µg/mL), of which four were confirmed to be tet(M). Fourteen isolates were also confirmed to have an additional drug-resistance phenotype by tet(A), tet(O), and tet(V) genes. These studies were funded in part by NIAID Partnership Grant #: 1R01AI093484 – 01 awarded to CUBRC and Tetraphase Pharmaceuticals; NIAID (U41 AI090455) awarded to CUBRC; and NIAID (U41 AI094714) awarded to Tetaphase Pharmaceuticals. These studies were funded in part by NIAID Partnership Grant #: 1R01AI093484 – 01 awarded to CUBRC and Tetraphase Pharmaceuticals; NIAID (U41 AI090455) awarded to CUBRC; and NIAID (U41 AI094714) awarded to Tetaphase Pharmaceuticals.

Conclusion: We have demonstrated the activity of TP-271 against a panel of 20 N. gonorrhoeae isolates with various drug-resistance profiles. If confirmed in vivo, these data support TP-271 as a promising new antibiotic for use against infections caused by multidrug-resistant N. gonorrhoeae.

References

