The Fluorocycline TP-271 is Potent Against Major Complicated Community-Acquired Bacterial Pneumonia (CABP) Pathogens
Tetraphase Pharmaceuticals, Inc., Watertown, MA; Mount Sinai Hospital, Toronto, Ontario; Southwestern Institute, Birmingham, AL; University of Alabama at Birmingham, Birmingham, AL; M360, Sherbrooke, Quebec

Abstract
A greater than 60-year track record of proven safety and clinical success validates the tetracyclines as a valuable class of broad-spectrum antibiotics worthy of continued drug development. Tetracyclines arrest the growth of bacteria by blocking the binding of aminoacyl-RNA to the A site of the 30S ribosomal subunit. While antibacterial activity is generally considered bacteriostatic, it has been shown that tetracyclines can be bactericidal in some cases, with some organisms [1, 2]. TP-271 is a novel, fully synthetic fluorocycline antibacterial in preclinical development for IV/local treatment of moderate to severe respiratory infections caused by susceptible and multidrug-resistant (MDR) public health and biothreat pathogens [3].

Introduction

Methods

Results

Table 1. Determination of MIC50 and MIC90 values for CABP Pathogens

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC50 (µg/mL)</th>
<th>MIC90 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>0.03-0.25</td>
<td>0.12-1.0</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>0.5-4</td>
<td>1-8</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>0.03-0.25</td>
<td>0.12-1.0</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>0.03-0.25</td>
<td>0.12-1.0</td>
</tr>
</tbody>
</table>

Figure 1. Time Kill Curves for CABP Pathogens

Conclusions

TP-271, a novel fully synthetic tetracycline, exhibited excellent potency against key MDR public health respiratory pathogens, including *S. pneumoniae*, MRSA, *S. pyogenes*, *H. influenzae*, and *M. catarrhalis*. TP-271 showed good activity against atypical pathogens *M. pneumoniae*, *L. pneumophila*, and *C. pneumoniae*, however, in vitro activity against the latter two organisms was likely limited by media interference, and thus potency is underestimated in these assays.

TP-271 was generally bacteriostatic against MRSA, *S. pneumoniae*, *S. pyogenes*, and *M. catarrhalis* at 4X and 8X MIC. At 2 µg/mL, an estimation of the CB50 in man, TP-271 showed bactericidal activity against some isolates.

TP-271 was bacitracin-resistant against *H. influenzae* in all concentrations tested.

TP-271 shows promise as a new antibiotic for the empirical treatment of moderate-to-severe CABP.

Table 2. Media used in *C. pneumoniae* and *L. pneumophila* assays in combination with TP-271 activity

<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC50 (µg/mL)</th>
<th>MIC90 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. pneumoniae</td>
<td>0.03-0.25</td>
<td>0.12-1.0</td>
</tr>
<tr>
<td>L. pneumophila</td>
<td>0.03-0.25</td>
<td>0.12-1.0</td>
</tr>
</tbody>
</table>

These studies were funded in part by NaDoP Grant B# 1031A039448 - 01 and NaDoP Contract B# HHSN2722011000B2 awarded to CUBIT and Tetraphase Pharmaceuticals; the content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The authors appreciate the support of Dr. Anne Raddick, Dr. Katie Edwards and Amy Howlett at CUBIT. We also thank Kathy Kersten at Tetraphase for helping with the time kill graphs.

References

Contact:
Leilani Webster
Tetraphase Pharmaceuticals
leilani@tphase.com