Introduction

Eradavicycline is a novel, fully-synthetic, fluoroquinolone antibiotic that is currently under review by the EMA and FDA for the treatment of complicated intra-abdominal infections. This study evaluated the in vitro activity of eravacycline and comparators against Enterobacteriaceae and Acinetobacter baumannii isolates (including resistant strains) collected in 2016 from patients in Europe.

Methods & Materials

Clinical isolates were collected in 2016 from hospitals in 14 European countries (Figure 1). Of the 1445 isolates, 207 were A. baumannii and 1,238 were Enterobacteriaceae (Figure 2). MICs were determined against 1445 isolates for eravacycline and comparators by CLSI broth microdilution methodology (1). ESBL positivity was defined phenotypically according to CLSI guidelines (1) for selected Enterobacteriaceae organisms (Klebsiella pneumoniae, K. oxytoca, Escherichia coli & Proteus mirabilis).

Results

Eradavicycline demonstrated potent in vitro activity against these resistant Gram-negative organisms isolated from European patients.

Table 1. Susceptibility of A. baumannii (n = 207) to Eravacycline and Comparators

Table 2. Susceptibility of carbapenem-resistant A. baumannii (n = 163) to Eravacycline and Comparators

Table 3. Susceptibility of all Enterobacteriaceae (n = 1,445) to Eravacycline and Comparators

Table 4. Susceptibility of carbapenem-resistant Enterobacteriaceae (n = 207) to Eravacycline and Comparators

Table 5. Susceptibility of 3rd/4th generation cephalosporin-resistant Enterobacteriaceae (n = 326) to Eravacycline and Comparators

Table 6. Susceptibility of ESBL-Positive Enterobacteriaceae (n = 110) to Eravacycline and Comparators

Conclusions

Eradavicycline demonstrated potent in vitro activity against these resistant Gram-negative organisms isolated from European patients.

References


Acknowledgments

This study was funded by a grant from Tetraphase Pharmaceuticals.