Abstract

Background: Enterobacteriaceae (ENT) are a large family of gram-negative bacilli that are responsible for many nosocomial infections. Resistance to β-lactams is a major challenge for clinicians, as these organisms often exhibit unique patterns of resistance. In a study conducted from 2013-14, MIC results for ENT isolates were determined by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. In this study, we compared the performance of eravacycline against ENT, including those with extended-spectrum β-lactamases, isolated from US patients.

Methods

- **Materials and Methods**: ENT isolates were obtained from sinus, bone, and blood cultures. Antibiotic susceptibility was determined using CLSI 2015 breakpoints (5), with the exception of ciprofloxacin. MIC results for Enterobacteriaceae were determined by the CLSI broth microdilution method. Selection of isolates for susceptibility testing was based on resistance to extended-spectrum β-lactamases (ESBLs) and carbapenems, as well as susceptibility to third-generation cephalosporins (FGTs) and colistin. MIC values were determined using CLSI 2015 breakpoints (5), with the exception of ciprofloxacin. MIC values were determined using CLSI 2015 breakpoints (5), with the exception of ciprofloxacin.

Results

- **Table 1**: Antimicrobial activity of eravacycline and comparator agents against Enterobacteriaceae. Results are presented as the percentage of isolates susceptible (S), intermediate (I), or resistant (R) to each agent.

Table 2: Antimicrobial activity of eravacycline and comparator agents against Enterobacteriaceae. Results are presented as the percentage of isolates susceptible (S), intermediate (I), or resistant (R) to each agent.

Table 3: Antimicrobial activity of eravacycline and comparator agents against Enterobacteriaceae. Results are presented as the percentage of isolates susceptible (S), intermediate (I), or resistant (R) to each agent.

Conclusions

- **Results**: MIC results for ERV and comparators against 2,723 ENT isolates were determined by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. In this study, we compared the performance of eravacycline against ENT, including those with extended-spectrum β-lactamases, isolated from US patients.

References

- **Table 1**: Antimicrobial activity of eravacycline and comparator agents against Enterobacteriaceae. Results are presented as the percentage of isolates susceptible (S), intermediate (I), or resistant (R) to each agent.

Table 2: Antimicrobial activity of eravacycline and comparator agents against Enterobacteriaceae. Results are presented as the percentage of isolates susceptible (S), intermediate (I), or resistant (R) to each agent.

Table 3: Antimicrobial activity of eravacycline and comparator agents against Enterobacteriaceae. Results are presented as the percentage of isolates susceptible (S), intermediate (I), or resistant (R) to each agent.

Presentation Information

- **Presented at**: ASM Microbe 2016, June 16 – June 20, Boston, Massachusetts, USA