Poster 176 F1-2157

50th Annual ICAAC 12-15 September, 2010 **Boston**, MA

Abstract

Background: Semi-synthetic tetracyclines with C-9 modifications have been reported that overcome resistance by efflux and ribosomal protection. Using a total synthesis approach, systematic modification of the tetracycline D-ring led to the discovery of **TP-434**, a novel broad-spectrum fluorocycline.

Method: Compounds were synthesized via a tandem Michael-Dieckmann reaction with systematic modification of the tetracycline D-ring to optimize potency and pharmacology. Protein synthesis inhibition was confirmed in a coupled transcription/translation assay and antibacterial activities were evaluated using CLSI guidelines. In vivo efficacy after IV dosing was determined in a mouse systemic infection model challenged with ESBL⁺ E. coli or in a neutropenic thigh model infected with S. aureus SA191 tet(M).

Results: Among the fluorocyclines, **TP-434** had the best overall properties. **TP-434** was an equipotent inhibitor of protein synthesis ± ribosomal protection (TetM). Molecular modeling of **TP-434** into the 30S ribosomal crystal structure indicates key binding interactions in the A-site.

	MIC (µg/mL)												
Compound	SA101	SA161	SA158	EF159	SP160	EC155	EC133	KP153	KP457	AB250	PM112		
	ATCC 29213	MRSA tet (M)	tet (K)	tet(M)	tet (M)	tet (A)	ESBL	tet(A)	ESBL	tet (B)	ATCC 35659		
TP-434	0.016	0.016	0.016	0.016	0.016	1	0.13	0.5	0.5	2	0.25		
Tetracycline	0.5	32	> 32	> 32	> 32	> 32	> 32	> 32	4	> 32	32		
Tigecycline	0.063	0.13	0.063	0.063	0.016	0.5	0.13	1	1	4	1		
Levofloxacin	0.13	16	0.25	2	0.5	1	> 32	2	64	32	0.031		
SA: S. aureus; SP:	SA: S. aureus; SP: S. pneumoniae; EF: E. faecium; EC: E. coli; AB: A. baumannii; KP: K. pneumoniae; PM: P. mirabilis; MRSA: methicillin-resistant S. aureus; ESBL: extended-spectrum β-lactamase producing												

The mouse septicemia PD₅₀ challenged with *E. coli* was 1.2 mg/kg for **TP-434** versus 3.5 mg/kg for tigecycline. In the *S. aureus* neutropenic thigh model, **TP-434** provided a 3 \log_{10} reduction in bioburden at a dose of 3 mg/kg while tigecycline and vancomycin required 17 and 10 mg/kg, respectively.

Conclusion: The *in vitro* antibacterial activity against MDR gram-positive and gram-negative pathogens and the efficacy in established animal models of infection warrant development of TP-434 as a single therapy treatment option.

Methods

Other strains were from the American Type Culture Collection (ATCC) Sigma-Aldrich or USP. or Micromyx (Kalamazoo, MI; S. aureus SA161).

In vitro Susceptibility. Compounds were dissolved in water and assayed in microtiter plates according to CLSI standards.

In vitro coupled E. coli transcription/translation assay. Antitranslational activity (IC_{50} values) was assessed in an *E. coli in vitro* coupled transcription/translation assay (TnT) with a firefly luciferase readout (Promega, Madison, WI). Purified TetM (2-3 µM) was added to TnT reactions to evaluate ribosome protection effects *in vitro*.

Mouse Systemic Infection Studies. Mice received treatment via intravenous (IV) injection 1 hour post intraperitoneal (IP) infection. At termination of study, percent survival was calculated and the dose (mg/kg) affecting 50% survival, the protective dose 50% (PD₅₀), was reported along with 95% confidence intervals as calculated by Probit analysis using GraphPad Prism version 4.03 (GraphPad Software).

Mouse Thigh Infection. Mice were rendered neutropenic through two consecutive IP injections of cyclophosphamide of 150 and 100 mg/kg on days -4 and -1, respectively. Mice were infected with approximately 5 x 10⁵ CFU/mL of bacteria in a 0.1 mL volume into the right thigh. At 1.5 hours post-infection mice received treatment via IV injection. One group of infected mice were euthanized and thighs processed for bacterial titers to serve as T = 0 controls. Twenty-four hours post-treatment, the remaining mice were euthanized, thighs aseptically removed, weighed, homogenized, serially diluted and CFUs per gram of thigh were calculated. The amount of test article required to achieve 1, 2, and 3 \log_{10} reductions from 24 hour control H_2N^{-1} thighs was determined.

Bacterial Strains. Strains with defined tetracycline-resistant Materials. Fluorocycline TP-434 was synthesized from the D-ring precursor 5 and the mechanisms were obtained from M. Roberts (Univ. Washington, bicyclic enone 6¹ via a Michael-Dieckmann annulation according to Scheme 1. The Seattle, WA). *E. coli* EC133 was obtained from CMI (Wilsonville, OR) synthesis of other fluorocycline analogs followed similar procedures. Tigecycline was and S. aureus SA191 was obtained from ViviSource (Waltham, MA). prepared according to published procedures.² Other marketed antibiotics were from

Scheme 1. Synthesis of TP-434

TP-434 is a Novel Broad-Spectrum Fluorocycline D. HUNT, X. XIAO, R. CLARK, W. O'BRIEN, C. FYFE, T. GROSSMAN, J. SUTCLIFFE, L. PLAMONDON Tetraphase Pharmaceuticals Inc., Watertown, MA

Table 1. In vitro Activity of TP-434 and Analogs

								M	<u>IC (μg/m</u>	IL)						
П	P	SA101	SA100	SA161	SA158	EF103	EF159	SP106	SP160	EC107	EC155	AB110	PA111	ECI108	KP109	KP153
		ATCC 29213	ATCC 13709	MRSA <i>tet</i> (M)	tet (K)	ATCC 29212	tet (M)	ATCC 49619	tet (M)	ATCC 25922	tet(A)	ATCC 19606	ATCC 27853	ATCC 13047	ATCC 13883	tet(A)
P-772	H ₃ C N _j ^z ,	0.063	0.13	0.25	1	0.063	0.13	0.016	0.016	0.25	16	2	8	0.5	1	8
P-435	F ₃ C N _{,5⁽}	1	1	2	4	2	4	0.5	1	16	>32	2	>32	>32	32	>32
P-221	H ₃ C H ₃ C CH ₃	0.13	0.25	0.25	0.063	0.063	0.13	0.016	0.016	0.25	2	0.5	16	1	1	2
P-715	TZ Z	4	4	>32	>32	8	>32	0.25	2	16	>32	8	>32	>32	32	>32
P-535	CH ₃ H ₃ C ^{-N} , ⁵	0.016	0.5	0.13	0.25	0.016	0.031	0.016	0.016	0.13	8	0.13	8	1	0.5	8
P-434	N. S. N. S. S.	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	1	0.031	8	0.13	0.13	0.5
P-921	$\overset{H_{3}C}{\underset{H_{3}C}{\overset{N}}} \overset{N}{\underset{c}{\overset{V}}} \overset{V}{\underset{c}{\overset{V}}} \overset{V}{\underset{c}{\overset{V}}}$	8	8	16	32	8	16	2	8	>32	>32	>32	>32	>32	>32	>32
P-561	N.S.	0.5	0.5	1	0.5	0.25	0.5	0.016	0.016	1	4	0.13	32	4	2	4
P-002	N N isi	0.063	0.063	0.5	1	0.25	0.5	0.031	0.13	1	>32	0.5	32	8	4	32
	lino	0.063	0.063	0 13	0.063	0.031	0.063	0.016	0.016	0.031	0.5	0.25	Q	0.25	0 13	1

 Tigecycline
 0.063
 0.063
 0.13
 0.031
 0.063
 0.016
 0.016
 0.031
 0.5
 0.25
 8
 0.25
 0.13
 1

 AB: Acinetobacter baumannii; EC: Esherichia coli; ECI: Enterobacter cloacae; EF: Enterococcus faecalis; KP: Klebsiella

pneumoniae; PA: Pseudomonas aeruginosa; SA: Staphylococcus aureus; SP: Streptococcus pneumoniae.

Figure 1. Molecular Modeling of TP-434 in the 30S Ribosomal A-site

TP-434 is docked into the binding pocket of the 30S ribosomal A-site, assuming a similar binding mode to tetracycline. The ball-and-stick model on the right pane illustrates potential hydrogen bonds and participation of one of the Mg cations (purple spheres) in the hydrogen-bonding network.

Figure 2. TP-434 Inhibits Protein Synthesis in the Presence of Tet(M)

Results

Table 2. *In vitro* Activity of TP-434 and Comparators against *ESKAPE* Pathogens³

		MIC range (µg/mL)										
		MIC ₅₀ /MIC ₉₀ (μg/mL)										
Organism	N	TP-434	Carbapenem ^a	Fluoroquinolone ^b	3 rd Gen Ceph ^c	Gentamicin	Piperacillin/ Tazobactam	Tigecycline				
Klebsiella	200	0.13-16	0.063->32	≤0.016->32	≤0.016->64	≤0.25->32	1->128	0.13-16				
pneumoniae	208	0.5/2	0.5/16	1/>32	32/>32	4/>32	8/>128	0.5/4				
SβL⁺ <i>Klebsiella</i>	04	0.13-8	0.03->32	0.03->32	0.13->64	≤0.25->32	2->128	0.13-8				
pneumoniae	91	0.5/1	0.5/>32	8/>32	>32/>64	>8/>32	>64/>128	1/4				
Carbapenem-	10	0.13-16	4->32	4->32	32->32	2->32	>128->128	0.25-16				
pneumoniae	19	0.5/1	32/>32	>32/>32	>32/>32	16/>32	>128/>128	1/1				
Acinetobacter	00	≤0.016-4	0.12->32	0.02->32	0.12->16	0.5->32	1->128	≤0.016-8				
baumannii	89	0.5/2	1/>32	8/>16	>16/>16	32/>32	>128/>128	1/4				
Pseudomonas	00	1->64	0.12->32	0.06->2	1->16	0.12->32	1->128	1->16				
aeruginosa	88	8/16	1/16	025/>2	>16/>16	2/16	8/>128	16/>16				
Enterobacter	40.4	0.03-4	0.06-32	0.008->32	0.03->64	≤0.25->32	0.5->128	0.06-8				
cloacae	134	0.5/2	0.5/4	0.25/>4	>16/>64	0.5/>8	>64/>128	0.5/4				
Enterobacter	20	0.25-2	≤1-2	≤0.25-0.5	≤0.5->64	≤0.25-1	≤0.5->64	0.25-4				
aerogenes	30	0.25/0.25	≤1/≤1	≤0.25/≤0.25	≤0.5/16	≤0.25/0.5	2/16	0.5/0.5				

Figure 3. Activity of TP-434 in a Murine Septicemia Model Challenged with Extended-spectrum β-lactamase (SHV) Producing *E. coli* EC133 *tet(*B)

ameropenem, ertapenem, imipenem; blevofloxacin, ciprofloxacin; cetazidime, ceftriaxone; ESBL+ = extended spectrum B lactamase producing isolates

Table 3. *In vitro* Activity of TP-434 and Comparators against *ESKAPE* Pathogens³ -continued

		MIC range (μg/,mL) MIC ₅₀ /MIC ₉₀ μg/,mL)									
Organism	N	TP-434	Linezolid	Daptomycin	Vancomycin	Levofloxacin	Tigecycline				
E. faecium	51	0.03-0.5	1-4	2-8	0.5-2	0.5-2 0.25->32					
vancomycin- Susceptible		0.06/0.12	2/2	4/8	1/1	>32/>32	0.06/0.12				
E. faecium	43	0.03-0.12	2-4	2-16	>64->64	>32->32	0.03-0.12				
vancomycin- Resistant		0.06/0.06	4/4	8/16	>64->64	>32/>32	0.06/0.06				
MDCA	137	≤0.015-0.5	1-4	0.5-1	0.5-1	0.12->32	0.06-0.5				
IVIRGA		0.06/0.12	2/4	1/1	1/1	>32/>32	0.12/0.12				

Conclusions

- TP-434 belongs to a diverse collection of novel tetracyclines generated by Tetraphase's fully synthetic platform and is the first fluorocycline selected for development as a broad spectrum antibacterial agent
- TP-434 is an equipotent inhibitor of protein synthesis in the presence or absence of Tet(M)
- TP-434 is broadly active against all ESKAPE pathogens (except *Pseudomonas*), including ESBL-producing and carbapenemresistant Enterobacteriaceae
- TP-434 is currently undergoing clinical trials

References

- 2) P.-E. Sum, V.J. Lee, R.T. Testa, J.J. Hlavka, G.A. Ellestad, J.D. Bloom, Y. Gluzman, F.P. Tally, J. Med. Chem., 37, 184 (1994).
- 3) L.B. Rice, J. Infect. Dis., 197, 1079 (2008).

Contact: Leland Webster **Tetraphase Pharmaceuticals** lwebster@tphase.com

Figure 4. Activity of TP-434 in a Neuropenic Thigh Model Challenged with MRSA SA191 tet(M)

¹⁾ M.G. Charest, C.D. Lerner, J.D. Brubaker, D.R. Siegel, A.G. Myers, Science, 308, 395 (2005)